Multiobjective Nonlinear Symmetric Duality Involving Generalized Pseudoconvexity
نویسنده
چکیده
The purpose of this paper is to introduce second order (K, F)-pseudoconvex and second order strongly (K, F)pseudoconvex functions which are a generalization of cone-pseudoconvex and strongly cone-pseudoconvex functions. A pair of second order symmetric dual multiobjective nonlinear programs is formulated by using the considered functions. Furthermore, the weak, strong and converse duality theorems for this pair are established. Finally, a self duality theorem is given.
منابع مشابه
Optimality and Duality for an Efficient Solution of Multiobjective Nonlinear Fractional Programming Problem Involving Semilocally Convex Functions
In this paper, the problem under consideration is multiobjective non-linear fractional programming problem involving semilocally convex and related functions. We have discussed the interrelation between the solution sets involving properly efficient solutions of multiobjective fractional programming and corresponding scalar fractional programming problem. Necessary and sufficient optimality...
متن کاملNondifferentiable second order symmetric duality in multiobjective programming
A pair of Mond–Weir type nondifferentiable multiobjective second order symmetric dual programs is formulated and symmetric duality theorems are established under the assumptions of second order F-pseudoconvexity/ F-pseudoconcavity. © 2005 Elsevier Ltd. All rights reserved.
متن کاملOn Nondifferentiable Higher-Order Symmetric Duality in Multiobjective Programming Involving Cones
In this paper, we point out some deficiencies in a recent paper (Lee and Kim in J. Nonlinear Convex Anal. 13:599–614, 2012), and we establish strong duality and converse duality theorems for two types of nondifferentiable higher-order symmetric duals multiobjective programming involving cones.
متن کاملNon-differentiable multiobjective mixed symmetric duality under generalized convexity
* Correspondence: lijueyou@163. com Department of Mathematics, Chongqing Normal University, Chongqing, 400047, PR China Abstract The objective of this paper is to obtain a mixed symmetric dual model for a class of non-differentiable multiobjective nonlinear programming problems where each of the objective functions contains a pair of support functions. Weak, strong and converse duality theorems...
متن کاملMixed symmetric duality in non-differentiable multiobjective mathematical programming
Two mixed symmetric dual models for a class of non-differentiable multiobjective nonlinear programming problems with multiple arguments are introduced in this paper. These two mixed symmetric dual models unify the four existing multiobjective symmetric dual models in the literature. Weak and strong duality theorems are established for these models under some mild assumptions of generalized conv...
متن کامل